METODY DETEKCJI PROMIENIOWANIA JĄDROWEGO 2

METODY DETEKCJI PROMIENIOWANIA JĄDROWEGO

- obserwacja toru cząstki (i rejestracja przejścia)
- rejestracja przejścia cząstki

DETEKTORY ŚLADOWE (obserwacja toru)

• komory mgłowe

jony w gazie (lub w cieczy) = ,,jądra" kondensacji dla cieczy w parze przechłodzonej

• Komora Wilsona

Orginalna komora Wilsona w Muzeum Cavendisha w Londynie.

• Komora dyfuzyjna

• Komory pęcherzykowe (Glasera)

Jony w cieczy = ,,jądra" parowania w cieczy przegrzanej

Przykłady komór:

	H ₂	Xe	C_3H_8
P [atm]	5	22	22.4
T [K]	28	253	58
$\rho [g/cm^3]$	0.07	2.3	0.4

Sterowanie pracą komory – podobnie jak komory Wilsona i dyfyzyjnej

Ślady zarejestrowanie w komorze pęcherzykowej.

• Komora w polu mahnetycznym + zdjęcie stereoskopowe → wyznaczanie pędu i

energii cząstek

$$ZeBv = \frac{mv^2}{r}$$

$$m = \frac{m_0}{\sqrt{1 - \beta^2}}, \beta = \frac{v}{c}$$

$$p = ZeBr$$

$$r = \frac{p}{ZeB} = \frac{m_0}{Ze} \frac{1}{B} \frac{v}{\sqrt{1 - \beta^2}}$$

$$E_K = \sqrt{p^2 c^2 + m_0^2 c^4} - m_0 c^2$$

- Emulsje (fotograficzne) jądrowe (AgBr ¬ zelatyna)
 - drobnoziarnistość
 - nieczułość na światło widzialne
 - stałe, ciekłe

Zastosowanie:

- dozymetria
- technika wsaźnika promieniotwórczego (atomy promieniowania w emulsji)
- rejestracja torów(większa gęstośc jonizacji niż w komorach):
 - + identyfikacja cząstki (masa, ładunek)
 - + pomiar energii i pędu (pole magnetyczne)

Zależność zasięgu od energii:

- prawie liniowa dla protonów
 - E = 0.1 MeV $R = 10^{-4} \text{ cm}$
 - E = 100 MeV R = 1 cm

• Dielektryczne detektory śladowe

- szkła, tworzywa sztuczne, kryształy nieorganiczne
- detektory progowe (różne ciała posiadają różne czułości na rejestracje cząstek o liczbach masowych i stratach energii na jednostkę drogi przekraczających pewne wartości progowe
- wzdłuż toru cząski uszkodzenia radiacyjne atomy przesunięte z węzłów do położeń międzywęzłowych oraz do pustych węzłów (luk)
- uwidocznianie śladów trawienie

np. mika - trawienie za pomocą HF; rejestracja cząstek

$$\frac{dE}{dx} > 13 MeV / (mg \cdot cm^{-2})$$

octan celulozy – trawienie NaOH \Rightarrow rejestracja α

- rejestracja głównie fragmentów rozszczepienia
- nie dają informacji i energii cząstki

• Komory iskrowe

REJESTRACJA PRZEJŚCIA CZĄSTKI

• Liczniki jonizacyjne: jonizacja (jonizacja oraz zderzenia atomów, jonów,

elektronów w silnych polach elektr.)

wychwyt

rekombinacja

wzmocnienie

Można mierzyć:

- impulsy od pojedynczych cząstek
- średni prąd jonizacji wywołany przez strumień cząstek
- W \sim 30 eV/1 para jonów (dla prawie wszystkich gazów z wyjątkiem He)

N – liczba par jonów/1cząstkę

Q = Nq q = 2e (zwykle) ładunek/1 cząstkę

$$Q_c = \int_0^t I_i dt$$

– w komorze jonizacyjnej pozwala wyznaczyć całkowitą energię traconą przez cząstkę Q ~ E

DETEKTORY Z ELEKTRODAMI PŁASKIMI

a	wzrost Q, hamowanie procesu wychwytu elektronów i rekombinacji jonów przez	
	rosnące pole elektryczne	
a+b	Q nie zależy od V, Q ~E, obszar komory jonizacyjnej	
c	obszar wzmocnienia gazowego	

DETEKTORY ELEKTRODAMI CYLINDRYCZNYMI

 $r_1 \ll r_2$ silne pole w pobliżu elektrody wewnętrznej (anody, nici) niezależność wzmocnienia gazowego od położenia toru cząstki i od E cząstki

1 obszar komory jonizacyjnej

obszar proporcjonalności $Q = An_0 e$ $n_0 \sim E$

n₀ – liczba elektronów pierwotnych

A – wzmocnienie gazowe (lawinowe powielanie elektronów w obszarze nici)

 $A = \left[\exp(2aNV)^{\frac{1}{2}} \right] f(r) \left[\left(\frac{V}{V_s} \right)^{\frac{1}{2}} - 1 \right]$

V-napięcie

2

 $V_{\rm s}-$ napięcie przy którym rozpoczyna się proces wzmocnienia gazowego

a – szybkość wzrostu przekroju czynnego na jonizację w zależności od energii $(d\sigma/dE)$

 $f(r) = \left[2r_1 \ln\left(\frac{r_2}{r_1}\right)\right]^{\frac{1}{2}}$

licznik proporcjonalny: $A = 10^2 - 10^4$

 r_1 – promień anody r_2 – promień katody

```
    obszar pracy licznika G – M
    liczniki G –M, wyładowanie wymagające gaszenia (lawinowe)
    gaszenie: wysoki opór połączony szeregowo z licznikiem, samogaszenie (np. Ar +
C<sub>2</sub>H<sub>5</sub>OH) C<sub>2</sub>H<sub>5</sub>OH – niski potencjał dysocjacji – pochłanianie promieniowania
ultrafioletowego, neutrlizacja w zderzeniach jonów Ar
```

⁵ obszar wyładowania ciągłego, liczniki iskrowe, komory iskrowe

- (1) + (2) dwa reżimy pracy
- zbieranie ładunku
- rejestracja impulsów od pojedynczych cząstek

Rozrzut czasów naarastania impulsów (czasu zbierania elektronów)

- rózna orientacja torów cząstek
- efekty końcowe
- efekty ścianki, tzn. przenikanie cząstek o dużym zasięgu przez ścianki detektora, tor cząstki w pobliżu ścianki (duży jonowy ładunek przestrzenny) zniekształcenie widma amplitudowego

Zastosowanie liczników jonizacyjnych

Komory jonizacyjne	rejestracja i badanie widm cząstek α , β , p \leftarrow wydajność 100%	
	mało czułe na promieniowanie γ	
Liczniki proprocjonalne	rejestracja i badanie widm cząstek α, β, p ← wydajność 100%	
	mało czułe na promieniowanie γ	
Liczniki G – M	jak wyżej oraz rejestracja γ ← wydajność w % = energia	
	γ [MeV], (dla E _{γ} ~ 1 MeV, rejestracja elektronów ze	
	zjawiska fotoelektrycznego, Comptona, par	
Liczniki proporcjonalne wypełnione:	Rejestracja (detekcja) neutronów Detekcja niskoenerget. prom. γ oraz X – może być w obecności silnego strumienia wysokoenerget.	
H_2 , CH_4 , C_2H_6 , C_3H_8 -dużo	promieniowania γ lub elektronów (skomplikowane	
protonów oraz np.	składy mieszanin gazowych)	
$BF_{3}(^{10}Be(n, \alpha)^{7}Li),$		
³ He(³ He(n, p)T)		

Liczniki proporcjonalne w Zakładzie Zastosowań Radioizotopów, Politechnika Śląska.

LICZNIKI SCYNTYLACYJNE

- krótkie impulsy, możliwość rejestracji strumienia cząstek o dużym natężeniu (ns)
- duża wydajność: ~ 100% cząstki ciężkie

 $\sim 10\%$ - promieniowanie $\,\gamma$

- proporcjonalność wysokości impulsów do energii

Scyntylatory

- kryształy nieorganiczne, np. ZnS(Ag), NaI(Tl), CsI(Tl)
- kryształy organiczne, np. antracen, naftalen, stilben (zawierają pierścienie benzenowe)
- scyntylatory ze sztucznego tworzywa (stałe roztwory w tworzyw pewnych substancji scyntylacyjnych, np. antracenu)
- ciecze i gazy, np. ksenon, hel

Mechanizmy luminescencji

Scyntylatory nieorganiczne – model pasmowy

Kryształ nieidealny

<u>wzbudzenia elektronów:</u> bezpośrednie zderzenia z cząstkami prom. jądr., wzbudzenia kulombowskie, absorpcja prom. ultrafioletowego.

Kryształy organiczne

<u>centrum luminescencji</u>: międzywęzłowy jon dodatni związany w studni potencjału poprzez oddz. z jonami w węzłach głównej sieci krystalicznej

Scyntylatory ciekłe ,tworzywa sztuczne \rightarrow model mechanizmu świecenia jak wyżej dla kryształów organ.

Scyntylatory gazowe – świecenie przy wzbudzeniu i jonizacji atomów lub cząsteczek przez cząstki naładowane.

	λ_{max} [Å]	czas zaniku scytylacji [s]	detekcja
scyntylator nieorg.	~ 4500	~ 10 ⁻⁶	α, β, γ
scyntylator org.	~ 4100-4400	~ 10 ⁻⁸	α, β, γ
scyntylatory plastikowe	~ 4500	~ 10 ⁻⁶	α, β
scyntylatory ciekłe	jak scyntylatory organiczne β – nisk		β – niskie energie

• REJESTRACJA (BŁYSKÓW) SCYNTYLACJI

Fotopowielacz elektryczny = układ czułych komórek fotoelektrycznych **Katoda** – duża wydajność fotoelektryczna **Dynody** – wtórna emisja elektronów,

2-4 → współczynnik rozmnożenia elektronów, wzmocnienie ~ 10^7

Schemat działania fotopowielacza.

Licznik scyntylacyjny.

Obecnie detektory scyntylacyjne są budowane w postaci sond składających się:

- kryształu scyntylacyjnego,
- fotokatody,
- fotopowielacza,
- przedwzmacniacza wraz z dyskryminatorem.

Licznik scyntylacyjny w Zakładzie Zastosowań Radioizotopów, Politechnika Śląska.

LICZNIKI CZERENKOWA

Zjawisko Czerenkowa – interferencja fal elektromagnet. wysyłanych przez drobiny

i wzmocnienie natężenia promieniowania w pewnym kierunku.

Zastosowanie:

- jako detektory progowe: $E_p = \sqrt{p^2 c^2 + E_0^2} - E_0$ np. szkło o n=1.5

e	$E_p = 0.2 \text{ MeV}$
Π	$E_p = 50 \text{ MeV}$
Р	$E_p = 300 \text{ MeV}$

– do rejestracji cząstek o określonym zakresie prędkości (zależność kierunku emisji promieniowania od prędkości) $\cos\theta = 1/n\beta$

przesłona + fotopowielacz ← wybór promieniowania z określonego przedziału kątów

- 1. Sonda Łuna-2.
- 2. Wnętrze sondy elementy elektroniczne.
- 3. Licznik Czerenkowa, w który wyposażono radziecki statek kosmiczny Łuna-1 i Łuna-2.

DETEKTORY PÓŁPRZEWODNIKOWE

Model pasmowy półprzewodników

Polaryzacja złącza

Cząstka jonizująca przechodzi przez złącze i generacja pary (elektron, dziura) zbieranie ładunku = impuls (jak w komorze jonizacyjnej) proporcjonalny do ładunku (energii)

Zalety:

- energia generacji pary [(-), (+),] ~ eV (~ 10 razy mniejsza w gazie) od energii na wytworzenie 1 pary jonów, np. Si – 3 eV (wys. impulsu 10 razy większa dla tej samej energii cząstki)
- krótki czas narastania impulsu (~10⁻⁸s), (duża ruchliwość nośników ładunku)
- krótkie zasięgi cząstek \rightarrow małe rozmiary detektora
- grubość warstwy zaporowej czułej na promieniowanie np. Si $d = 0.5\sqrt{\rho U} \ [\mu], \ [\rho] = \Omega \cdot \text{cm}. \ \rho = 10^4 ?, \ U = 500 \text{ V} \rightarrow d = 1 \text{mm}$

Zasięg	Cząstka	Energia cząstki
d = 1 mm	р	15 MeV
d = 1 mm	α	60 MeV
d = 1mm	e	1 MeV

– pojemność złącza (wielkość impulsu, stałe czasowe) $C \sim \frac{1}{d}$ np. Si (d = 1mm), C = 10 pF

TYPY DETEKTORÓW

 detektory z 	np. warstwa typu p utworzona przez utlenienie powierzchni
barierą	krzemu typu n \rightarrow złącze typu p–n (najprostszy typ detektora) praca
powierzchniową	w temperaturze pokojowej
– detektory	np. dyfuzja do Si typu p atomów dających zanieczyszczenia typu n
dyfuzyjne	(np. fosforu) w temperaturze 700-900°C
– detektory	jony Li = donory; mogą poruszać się pod wpływem napięcia, np.
dryftowane litem	do Si typu p dyfuzja Li na głębość kilkuset μ (złącze p – n)
("Li – drifted	w temp. ~ 150°C przyłożone napięcie wsteczne (~ kilkaset V)
detectors")	powoduje wniknięcie jonów Li na głębokość ~ kilka mm
	przechowywanie i praca detektora w temp. ~120 K i w próżni.

SPEKROMERIA MAS

- wyznaczanie mas atomowych
- wyznaczanie naturalnego składu izotopowego mieszanin
- identyfikacja nuklidów
- analiza chemiczna, separacja izotopów

Spekrometr masowy: źródło jonów

filtry (energii, pędu, prędkości)

kolektor

– Źródło jonów (jonizacja badanych atomów)

Metody jonizacji:

- o wyładowanie elektryczne wysokiego napięcia (iskrowe, łukowe)
- o termoemisyjne źródła jonów (termoemisja z powierzchni ciał stałych)
- o jonizacja elektronami (~100 eV)

– Filtry (wybór odpowiedniej wiązki jonów)

o filtry energii

(+ne) – monoenergetyczne źródło jonów o ładunkach +ne

U – napięcie przyspieszające

Przez kondensator przechodzą jony o energii:

 $E = \frac{1}{2}Mv^2 = neU \quad \left(\frac{M}{ne} = \frac{2U}{v^2}\right)$

 (r_0) – zerowa powierzchnia ekwipotencjalna (na jony działa tylko siła radialna) $r \neq r_0$ – jony podlegają ogniskowaniu (działaniu skoku potencjału)

F = ne
$$\varepsilon$$
, $\varepsilon = \frac{1}{r} \frac{V_2 - V_1}{\ln(R_2/R_1)}$, $\frac{Mv^2}{r} = ne\varepsilon$, $Mv^2 = ne\varepsilon$ r
przez kondensator przechodzą jony o energii:
E = $\frac{1}{2}Mv^2 = \frac{1}{2}ne\varepsilon$ r

TYPY SPEKTROMETRÓW

Spektrometr pojedynczo ogniskujący

źródło jonów, filtr pędów, kolektor (na szczelinie kolektora można ogniskować jony żądanych mas zmieniając indukcję pola magnet. B).

<u>Parametry</u>: U \approx const \approx 2÷4 kV (monoenerget. wiązka) $\varphi = 60^{\circ}, 90^{\circ}, r_{m} \approx 150 \text{ mm} (najczęściej)$ $\frac{M}{ne} = \frac{r_{m}^{2}}{2U}B^{2}$ M = const· B² (krzywa dyspersji spektrometr.)

Zastosowanie

- o wyznaczanie stosunków izotopowych (np. ${}^{13}C/{}^{12}C, {}^{18}O/{}^{16}O)$
- o analizy chemiczne
- o mała dokładność wyznaczania mas nuklidów

 $R = \frac{M}{\Delta M} \approx 1000$, R – (masowa) zdolność rozdzielcza

- Spektrometr paraboliczny

Metoda parabol Thomsona – najwcześniejsza historycznie metoda wyznaczania mas nuklidów. Jony o tej samej wartości M/ne lecz różnych v układają się na paraboli

- Spektrometry podwójnie ogniskujące, np. Niera
- rozbieżna i niejednorodna energetycznie wiązka jonów,
- filtr energii (kondensator cylindryczny),
- filtr pędu (sektorowe pole magnet.),
- kolektor.

R≈50000 a nawet R≈100000 (duża!) dlatego służy do wyznaczania dokładnych mas nuklidów.

Typowy przykład widma masowego.

Spektrometr masowy Thermo Finnigan.

Spektrometr masowy ISOPRIME (Laboratorium Spektrometrii Mas, Zakład Zastosowań Radioizotopów, Politechnika Śląska).

AKCELERATORY (radiowęgiel – metoda akceleratorowa)

- detektor ciężkich jonów C⁴⁺, Uniwersytet w Rochester
- licznik gazowy (E,
$$\frac{dE}{dx}$$
) $-\frac{dE}{dx} = \frac{aZ^2c^2}{v^2} \ln \frac{bv^2}{c^2 - v^2}$ wzór Bethego i Blocha , (c²-v²) – małe
 $\frac{dE}{dx} = \frac{KZ^2}{v^2} / Mv^2$
 $E \cdot \frac{dE}{dx} = kMZ^2$ (E, $\frac{dE}{dx}$) umożliwia identyfikację cząstki (E \approx 50 MeV, C⁴⁺)

 $E(C^{4-}) \approx 200 \text{ keV} \rightarrow 10 \text{ MeV} \rightarrow TANDEM \rightarrow E(C^{4+}) \approx 50 \text{ MeV}$

2MV liniowy akcelerator van der Graffa, konstrukcja z lat 1960.

Akceleratorowy spektrometr masowy typu 1.5 SDH-Pelletron Model "Compact Carbon AMS" nr ser. 003, wyprodukowany w 2001r. przez National Electrostatics Corporation, Middleton (USA).