BUDOWA I WŁASNOŚCI JĄDRA ATOMOWEGO

LITERATURA DO WYKŁADÓW

- V. Acosta, C.L. Cowan, B.J. Graham "Podstawy fizyki współczesnej" PWN 1981
- E. Skrzypczak, Z. Szefliński "Wstęp do fizyki jądra atomowego i cząstek elementarnych" PWN 1995
- A. Strzałkowski "Wstęp do fizyki jądra atomowego" PWN 1969
- Sz. Szczeniowski "Fizyka jądra i cząstek elementarnych" PWN 1974
- W. Szymański "Chemia jądrowa" PWN 1996
- W. Żuk, red. "Spektrometria mas i elektromagnetyczna separacja izotopów" PWN 1980
- J. Massalski "Fizyka dla inżynierów", tom 2

"Fizyka współczesna" Wyd. NT 1977

- Theo Mayer-Kuckuk "Fizyka jądrowa" PWN 1983
- J. England "Metody doświadczalne fizyki jądrowej" PWN 1980

HISTORIA

- 1896 odkrycie promieniotwórczości uranu, Becquerel; prace Marii i Piotra Curie
- 1911 odkrycie jądra atomowego(rozproszenie α), Rutherford
- 1919 azot + α , pierwsza sztuczna przemiana jądra atomowego
- 1932 sztuczna przemiana jądra atomowego cząstkami przyspieszonymi odkrycie pozytonu

odkrycie neutronu, Chadwick

- 1939 rozszczepienie jąder uranu, Hahn i Strassmann
- 1942 pierwszy reaktor jądrowy, Fermi
- 1947 odkrycie mezonów π , Powell
- 1955 odkrycie antyprotonu i antyneutronu
- 1964 model kwarków
- 1974 odkrycie cząstek powabnych
- 1979 unifikacja oddziaływań słabych i elektromagnetycznych

lata 80-te, 90-te:

- odkrycie kwarków
- model standardowy cząstek
- rozwój techniki akceleratorowej
- wielkie eksperymenty międzynarodowe odkrycia nowych cząstek
- 1984 odkrycie bozonów W i Z
- 1988 fizyka neutrin
- **1990** struktura protonu

JĄDRO ATOMOWE

Rozmiary, odległości: $1 \text{ fm} = 10^{-15} \text{ m} (1 \text{ fermi})$ Masy, energie ($E = mc^2$): eV, keV, MeV, GeV, TeV $1 \text{eV} = 1.6 \cdot 10^{-19} \text{ J}, c = 3 \cdot 10^8 \text{ m/s}$ Masy cząstek: MeV, GeV (lub MeV/c^2 , GeV/c^2) **Pędy:** MeV/c, GeV/c **Masy nuklidów:** 1 u = 1 jednostka masy atomowej $1 \text{ u} = \frac{1}{12} \text{ masy } \frac{12}{6}C$ $1 \text{ u} = 1,66053 \cdot 10^{-27} \text{ kg} = 931,481 \text{ MeV/c}^2$ masa elektronu (spoczynkowa) $m_e = 0.511 \text{ MeV}$ $m_p = 938,28 \text{ MeV}$ masa protonu (spoczynkowa) $m_n = 939.57 \text{ MEV}$ masa neutronu (spoczynkowa)

CZĄSTKI RELATYWISTYCZNE (swobodne)

Energia i masa: $E_0 = m_0 c^2$ energia spoczynkowa $E = mc^2$ energia całkowita = $E_K + E_0$ $E_K = E - E_0$ energia kinetyczna

$$m = \gamma m_{0}, \quad \gamma \equiv \frac{1}{\sqrt{1 - \beta^{2}}}, \quad \beta \equiv \frac{v}{c}, \quad \gamma > 1, \quad \beta > 1$$
$$E_{K} = (\gamma - 1)m_{0}c^{2} = (\gamma - 1)E_{0} \neq \frac{1}{2}m_{0}v^{2}$$

Pęd:
$$p = mv = \gamma m_0 v$$

 $E = \sqrt{(pc)^2 + E_0^2}$, $E_K = \sqrt{(pc)^2 + E_0^2} - E_0$
Moment pędu: $\left(\hbar = \frac{h}{2\pi}\right)$ przyjmuje wartości
 $\left(\frac{1}{2}\hbar, \frac{3}{2}\hbar, \frac{5}{2}\hbar, ...\right)$ lub $\left(0, \hbar, 2\hbar, 3\hbar, ...\right)$ $\hbar = 1,054 \cdot 10^{-34} J \cdot s = 6,58 \cdot 10^{-22} MeV \cdot s$

Długość fali de Broglie'a: $\lambda = \frac{\hbar}{p}$, p = mv

METODY BADANIA WŁASNOŚCI JĄDER ATOMOWYCH W STANIE PODSTAWOWYM

Własności jąder w stanie podstawowym:

Stan podstawowy = stan o najniższej energii, jądro nie musi być stabilne ! oznaczenia: protony i neutrony = nukleony, jądro = nuklid

$${}^{A}_{Z}B_{N}$$
 Z – liczba protonów

.

N – liczba neutronów

A = Z + N - liczba masowa ("masa")

- izotopy: to samo Z, różne A (np. ${}^{12}_{6}C$, ${}^{13}_{6}C$, ${}^{14}_{6}C$)
- izobary: to samo A, różne Z (np. ${}^{16}_{8}O, {}^{16}_{7}N$)
- **izotony:** to samo N (np. ${}^{14}_{6}C_{8}, {}^{15}_{7}N_{8}, {}^{16}_{8}O_{8}$)

- nuklidy zwierciadlane: np. ${}^{11}_{5}B$ (Z = 5, N = 6), ${}^{11}_{6}C$ (Z = 6, N = 5)
- ładunek jądra: Q = Ze

- rozmiary jąder, rozkład masy i ładunek jądra

 $\rho \approx \text{const}$, $V \sim A$, $r \sim A^{1/3}$; $R_j = r_0 A^{\frac{1}{3}}$ - promień jądra

 $r_0 \approx const \ dla \ wszystkich \ jąder$

$$\rho(r) = \frac{\rho_0}{1 + e^{(r-R)/a}} \quad R = r_0 A^{\frac{1}{3}}$$

$$A \ge 40 \quad r_0 \approx 1.07 \text{ f} \quad (1\text{f} = 10^{-15}\text{m})$$

$$\overline{r_0} \approx 1.3 \text{ f}$$

$$a \approx 0.55 \text{ f rozmycie powierzchni}$$

$$t \approx 4.4 \text{ a}_0 = 2.4 \text{ f}$$

$$\rho_j \approx \frac{Am_{\alpha}}{\frac{4}{3}\Pi R_j^3} \approx 2 \cdot 10^{17} \, kg \, / \, m^3$$

gęstość materii jądrowej ($\rho_A = 2 \cdot 10^5 \text{ kg/m}^3 - \text{atom}$)

- struktura ładunkowa nukleonu (na podstawie badań rozproszeń elektronów na nukleonach)

Rozkład ładunku nukleonu

- kształt jąder sferyczne o symetrii osiowej (elipsoida, cygaro) $(a/b)_{max} = 1.17$

- masy i energie wiązania jąder

 $E_B = c^2 \left[ZM_p + (A - Z)M_n - M_j \right]$ energia wiązania

ostre maksima dla A = **4**, **8**, **12**, **16** oraz dla liczb magicznych (A = **20**, **28**, **50**, **82**, **126**)

- spin i momenty magnetyczne

$$K = \sqrt{I(I+1)\hbar} \text{ spin}$$

$$\mu I = g\sqrt{I(I+1)}\mu_j \text{ magnetyczny moment dipolowy}$$

$$\left(\mu_j = \frac{\mu_B}{1836} = \frac{9.27 \cdot 10^{-24} A \cdot m^2}{1836}\right) \text{ magneton jądrowy} \sim 5 \cdot 10^{-27} \text{ Am}^2$$

g – czynnik jądrowy (giromagnetycczny)

– (nuklidy) parzystość nuklidów:

pp (najwięcej), pn, np, nn (${}_{1}^{2}D, {}_{3}^{6}Li, {}_{5}^{10}B, {}_{7}^{14}N$ - tylko)

- spiny

$$pp - I = 0$$
 } parzyste A, I całkowite
 $nn - I = 1, 2, ..., 6$
 $np, pn - I = \frac{1}{2}, \frac{3}{2}, ..., \frac{9}{2}$ nieparzyste A, I połówkowe

- momenty magnetyczne

$\mu_p = 2.79~\mu_j$	(wartość anomalna $\neq 1/_2$	$_{2} \mu_{j})$
$\mu_n = -1.91 \mu_j$	(wartość anomalna $\neq 0$,	struktura ładunku)
$\mu_d = 0.857~\mu_j$	(nie jest sumą μ_p i μ_n)	
$I = 0 - \mu_1$	I = 0	I całk. – $\mu_I > 0$
jądra np	– I duże, $\mu_{\rm I} > 0$	jądra pn – I małe, $\mu_I < 0$

parzystość stanu jądra

 $\Psi(-x, -y, -z) = \Psi(x, y, z)$ stan parzysty(parzystość dodatnia) $\Psi(-x, -y, -z) = -\Psi(x, y, z)$ stan nieparzysty(parzystość ujemna) Liczba kwantowa parzystości $\Pi = (-1)^{\Sigma l_i}$

statystyka jąder

1) statystyka Fermiego (I – połówkowe) 2) statystyka Bosego – Einsteina (I – całkowite)

WŁASNOŚCI SIŁ JĄDROWYCH

- nie mają charakteru grawitacyjnego i elektromagnetycznego
- krótki zasięg, $\sim 10^{-15}$ m, nie mają wpływu na energię wiązania molekuł
- własności wysycania (jak dla wiązań chemicznych)

 $B \sim A$ a nie $B \sim A(A-1)$ oddziaływań tylko sąsiednie nukleony

• ładunkowa symetria sił jądrowych

oddziaływania p-p = n-n tw. słabe lub p-p = n-n = n-p tw. mocniejsze

wygodnie jest:

neutrony i protony – dwa stany ładunkowe nukleonu rozróżniane przez liczbę kwantową izospinu (spinu izobarycznego)

p
$$t_3 = \frac{1}{2}$$
 (lub $T_3 = \frac{1}{2}$)
n $t_3 = -\frac{1}{2}$

 $\begin{array}{c} p-p \quad t_3 = 1 \\ p-n \quad t_3 = 0 \\ n-n \quad t_3 = -1 \end{array} \right\} \quad Oddziaływania jądrowe są niezmiennicze względem transformacji trzeciej składowej izospinu$

• siły jądrowe mają charakter wymienny - siły wymienne o krótkim zasięgu

$$V(r) = V_0 \frac{e^{-r/r_0}}{r/r_0}$$

potencjał Yukawy (1935r.)

 r_0 – zasięg, r_0 ~1,4 fm

• masa wymienionej cząstki

 $\Delta E \cdot \Delta t = \hbar$

 $\Delta t =$ czas potrzebny na przejście cząstki na odległość r₀, $\Delta t = \frac{r_0}{c}$

 $\Delta E = Mc^{2}$ nieokreśloność energii potrzebnej do wytworzenia cząstki $M = \frac{\hbar}{r_{0}c} \approx 275m_{e}$ mezon π (cząstka wirtualna)

		piony są cząstkami nietrwałymi:
oddziaływanie p-n:	$p \leftrightarrow n + \pi^+$	$\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}$ $\tau = 2.5 \cdot 10^{-8} \text{ s}$
	$n \leftrightarrow p + \pi^{-}$	$\pi^0 \rightarrow 2\gamma$ $\tau = 1,78 \cdot 10^{-16} \mathrm{s}$
oddziaływanie p-p, n-n:	$p \leftrightarrow p + \pi^{0}$ $n \leftrightarrow n + \pi^{0}$	$m_{\pi^{\pm}} = 273,13m_e = 139,5669$ MeV $m_{\pi^0} = 264,13m_e = 134,9745$ MeV spin $S_{\pi} = 0$

w jądrze nie ma elektronów $\Delta p_e \cdot \Delta x \ge \hbar$ nieokreśloność pędu elektronu w jądrze $\Delta x \approx 1$ fm $\Delta p_{e^+} = \Delta p_{e^-} \approx p_e = 200$ MeV/c $\rightarrow E_e \approx p \cdot c = 200$ MeV ($E_0 << E$)elektrony z przemiany β mają energię co najwyżej kilka MeV

NATURALNE PRZEMIANY PROMIENIOTWÓRCZE JĄDER

 \succ przemiana α

 $_{Z}^{A}X \rightarrow_{Z-2}^{A-4}Y + _{2}^{4}\alpha(_{2}^{4}He)$ oddziaływanie silne X= izotop promieniotwórczy (np.: ²³⁸U, ²³²Th, ²²⁶Ra, ²²²Rn) α - monoenergetyczne dN/dE rozkład energetyczny cząstek α (widmo energii) ~ MeV E_{α} 0

≻ wychwyt K

 ${}^{0}_{-1}e^{-} + {}^{A}_{Z}X \rightarrow {}^{A}_{Z-1}Y + \nu_{e}$ oddziaływanie słabe elektromagnetyczne

$$p + e^{-} \rightarrow n + \nu_e$$
 (⁴⁰Ca)

≻ stała rozpadu

prawdopodobieństwo rozpadu pojedynczego jądra w jednostce czasu

$a = -\frac{dN}{dN}$	V 1	1 dN	$\frac{dN}{2} > 0$
n = - N	dt	N dt	dt = 0
$\lambda = cons$	st dla	danego	izotopu

$$t=0, \qquad N=N_0$$

prawo rozpadu promieniotwórczego

$$\mathbf{N} = \mathbf{N}_0 \mathrm{e}^{-\lambda t}$$

inaczej:
$$t = 0$$
, $N = N_0$, $\frac{dN}{N} = -\lambda dt$

$$\int_{N_0}^{N} \frac{dN}{N} = \int_{0}^{t} -\lambda dt \rightarrow \ln \frac{N}{N_0} = -\lambda t$$

czas połowicznego zaniku T1/2

$$T_{1/2}: \qquad \frac{1}{2}N_0 = N_0 e^{-\lambda \cdot T_{1/2}} \quad \longrightarrow \quad -\ln 2 = -\lambda \cdot T_{1/2} \quad \longrightarrow \qquad T_{1/2} = \frac{\ln 2}{\lambda} = \frac{0.693}{\lambda}$$

Przedział czasu połowicznego zaniku: ~ $10^{-5} s < T_{1/2} < 10^{12} lat$

<u>Założenie:</u> t=0, $N_1=N_0$, $N_2=0$

W chwili *t*: $N_1 = N_0 \cdot e^{-\lambda_1 \cdot t}$ $N_2 = N_0 - N_1 = N_0 (1 - e^{-\lambda_1 \cdot t})$

Gdy jądra pochodne są niestabilne

$$A \rightarrow B \rightarrow C$$

$$N_{1} \lambda_{1} N_{2} \lambda_{2}$$

$$\frac{dN}{dt} = \lambda_{1}N_{1} - \lambda_{2}N_{2}$$

$$\frac{dN_{2}}{dt} + \lambda_{2}N_{2} = \lambda_{1}N_{1} = \lambda_{1}N_{0}e^{-\lambda_{1}t}$$

$$\frac{dN_{2}}{dt} + \lambda_{2}N_{1} = \lambda_{1}N_{1} = \lambda_{1}N_{$$

 $A = \lambda_1 N_1 = \lambda_2 N_2$ Wiekowa równowaga promieniotwórczaSzybkość rozpadu liczby
jąder macierzystychSzybkość przyrostu liczby
jąder pochodnych

NATURALNE PIERWIASTKI PROMIENIOTWÓRCZE

pierwotne długożyciowe izotopy promieniotwórcze

$10^8 < T_{1/2} < 10^{12} lat$	Wiek Ziemi ≈ 5 · 10 ⁹ <i>lat</i> (skład izotopowy ołowiu)

Izotop	T _{1/2} [lata]	
²³⁵ U	7.108	Dają początek naturalnym trzem szeregom
²³⁸ U	$4.47 \cdot 10^9$	(rodzinom) promieniotwórczym pierwiastków
³² Th	$1.4 \cdot 10^{10}$	
¹⁷⁶ Lu	$3.6 \cdot 10^{10}$	· ·
¹⁸⁷ Re	$4.3 \cdot 10^{10}$	
⁸⁷ Rb	$4.9 \cdot 10^{10}$	Początek czwartego szeregu:
¹³⁸ La	$1 \cdot 10^{11}$	²³⁷ Np $T_{1/2}$ < wiek Ziemi
¹⁴⁷ Sm	$1.05 \cdot 10^{11}$	nie występuje naturalnie w przyrodzie
¹⁹⁰ Pt	$6.9 \cdot 10^{11}$	

➢ szeregi promieniotwórcze

A = 4n+m liczba masowa pierwiastków w szeregu

n – liczba całkowita

1 1, •	\mathbf{a}	1	~	2
m = charakteruzule czereg: m =	11			_ ≺
m = CharakteryZuje Szereg, m =	υ.	1.	4.	2
			,	

Liczba	Szereg	Nuklid pooratkowy	n	п	$T_{1/2}$	Nuklid
masowa	22008	Nukila początkowy	początkowe	końcowe	[lata]	końcowy
4n	torowy	$^{232}_{90}Th$	58	52	$1.33 \cdot 10^{10}$	$^{208}_{82}Pb$
4n + 1	neptunowy	$^{237}_{93}Np$	59	52	$2.20 \cdot 10^{6}$	$^{209}_{83}Pb$
4 <i>n</i> + 2	uranowo-radowy	$^{238}_{92}U$	59	51	$4.51 \cdot 10^9$	$^{206}_{82}Pb$
4 <i>n</i> +3	aktyno-uranowy	$^{235}_{92}U$	58	51	$7.15 \cdot 10^9$	$^{207}_{82}Pb$

Szereg promieniotwórczy uranowo-radowy

Szereg promieniotwórczy uranowo-aktynowy

Szereg promieniotwórczy torowy

Szereg promieniotwórczy neptunowy

inne izotopy w przyrodzie wytwarzane sztucznie (w reakcjach jądrowych)

np. TRYT
$${}_{1}^{3}H \equiv T$$
: ${}_{7}^{14}N + {}_{0}^{1}n \rightarrow {}_{6}^{12}C + {}_{1}^{3}H$ $T_{1/2} \xrightarrow{\beta} 12.4 lat$
WEGIEL ${}_{6}^{14}C$: ${}_{7}^{14}N + {}_{0}^{1}n \rightarrow {}_{6}^{14}C + {}_{1}^{1}p$
 ${}_{6}^{14}C \rightarrow {}_{7}^{14}N + {}_{-1}^{0}e + \overline{v_{e}}$ $T_{1/2} \xrightarrow{\beta} 5730 lat$

 $\binom{3}{1}H$, $\binom{14}{6}C$) – duża produkcja w górnych warstwach atmosfery podczas próbnych wybuchów jądrowych

ODDZIAŁYWANIA JĄDROWE – METODY BADAŃ Założenia:

siły jądrowe są dobrze opisywane przez oddziaływania między dwoma nukleonami
oddziaływania opisywane są przez potencjał

UKŁAD DWÓCH NUKLEONÓW

> oddziaływanie przy niskich energiach

o najprostszy stan związany układu dwóch nukleonów, własności:

 $p - n \equiv_1^2 D \equiv d \equiv DEUTERON$

własności deuteronu

B = 2,226 MeV	energia wiązania
S = 1	spin
$\mu_D=0,857~\mu_j\neq\mu_p+\mu_n$	magnetyczny moment dipolowy
$Q_{D/e} = 2,74 \cdot 10^{-31} \text{ m}^2$	elektryczny moment kwadrupolowy

• rozpraszanie nukleonów na nukleonach: $\lambda = \frac{\hbar}{p}$ duże

> oddziaływanie przy wysokich energiach ($\lambda = \frac{\hbar}{p}$ małe)

możliwość określenia V(r) – zależności potencjału oddziaływań od odległości (w zależności od energii)

o obszar rozproszeń elastycznych

zderzenia sprężyste – całkowita energia zachowana w układzie tylko dwóch nukleonów

• obszar rozproszeń nieelastycznych(niesprężystych)

kosztem części energii nukleonów może być wytworzona cząstka, np.

 $E_p=230$ MeV energia progowa na wytworzenie mezonu π

oddziaływanie n-p z polem elektromagnetycznym

badanie zależności $\sigma(E)$ $\begin{bmatrix} {}^{2}_{1}D + \hbar\omega \rightarrow {}^{1}_{1}p + {}^{1}_{0}n & reakcja \text{ fotorozszczepienia} \\ {}^{1}_{1}p + {}^{1}_{0}n \rightarrow {}^{2}_{1}D + \hbar\omega & radiacyjne \text{ chwytanie neutronu przez proton} \end{bmatrix}$

> najprostsza postać potencjału oddziaływania p-n w ${}_{1}^{2}D$ i jego zasięg (do objaśnienia własności deuteronu)

Energia wiązania: dla B = 2,226 MeV, b = 2f $V_0 = +28$ MeV głębokość jamy potencjału

Moment magnetyczny dipolowy:

Stan S (L = 0) $\rightarrow \mu_0 = \mu_p + \mu_n$ (μ_D pochodzenia spinowego)

 $\mu_D \neq \mu_p + \mu_n$ oraz oddziaływ. z polem elektromagnetycznym

stan ${}_{1}^{2}D={}^{3}S_{1}+{}^{3}D_{1}(7\%)$ (mieszanina stanów trypleowych

Konsekwencje: $V = V(r) \cdot S_{12}$ wypadkowy potencjał oddz. n-p

V(r) – człon centralny potencjału

S₁₂ – człon tensorowy(zależny od spinów)

Własności deuteronu \rightarrow oddziaływanie n-p w stanie trypletowym

Odstępstwa od prawa Rutherforda w rozpraszaniu cząstek α na jądrach atomowych

.

Odstępstwa od prawa Rutherforda w rozpraszaniu cząstek α na jądrach atomowych.

ROZPRASZANIE NUKLEON – NUKLEON PRZY NISKICH ENERGIACH

Informacje o oddziaływaniach **n-p**, **p-p** w stanie ($\downarrow\uparrow$) singletowym

Badania rozkładów kątowych oraz σ_{tot}

rozpraszanie protonów na protonach

oddziaływanie elektromagnetyczne protonów

$$\frac{d\sigma}{d\Omega} = \left(\frac{e^2}{4E}\right)^2 \left(\cos ec^4 \frac{\theta}{2} + \sec^4 \frac{\theta}{2}\right)$$

rozkład kątowy – wzór MOTTA(θ , E – mierzone w

układzie CM, E<20 MeV)

➢ oddziaływanie n-n: badanie reakcji D(n, p)2n D + n → p + 2n

n-n = n-p = p-p w stanie sigletowym

wniosek: w tych samych stanach spinu oddziaływania jądrowe p-p, n-n, n-p są takie same

n-n p-p n-p T₃ $-\frac{1}{2}-\frac{1}{2}=-1$ $+\frac{1}{2}+\frac{1}{2}=+1$ $+\frac{1}{2}-\frac{1}{2}=0$ stany ładunkowe Niezależność sił jądrowych od ładunku

ODDZIAŁYWANIE NUKLEON – NUKLEON PRZY WYSOKICH ENERGIACH E > 20 MeV

Badania $\frac{d\sigma}{d\Omega}$, σ_{tot} (osłabienie wiązki)

> charakter wymienny sił jądrowych

cząstki wymienne: wirtualne mezony π , K oraz cięższe

(oszacowania masy mezonów i czasu oddziaływań – jak wyżej)

> potencjał jądrowy z rdzeniem odpychającym

<u>Oddziaływanie: mezon π - nukleon:</u>

r> 1,5f	wymiana pojedynczych π
0,7 < r < 1,5f	wymiana 2 wirtualnych π
r < 0,7f	siły odpychające, wymiana π ,K
reakcje produkcji nowych cząstek (zgodnie z prawami zach.)

- o spinu
- o parzystości
- o pozostałych liczb kwantowych

o rozpraszanie pionów na nukleonach oraz nukleonów na nukleonach
 rezonansowy charakter procesów (duże σ dla pewnych E)
 rezonanse = wzbudzone stany związane cząstek

 $\tau \approx 10^{-23} \text{ s}$

 $N + N \rightarrow N^* + N$

 $N^* \rightarrow N + \pi$ N – nukleon

ROZSZCZEPIENIE JĄDER

podział na dwa fragmenty o zbliżonych masach, np. przez przechwycenie neutronu:

 $_{Z}^{A}X+_{0}^{1}n \rightarrow _{Z_{1}}^{A_{1}}Y+_{Z_{2}}^{A_{2}}W+m_{0}^{1}n+Q \qquad Q \approx 200 MeV \quad na \quad akt \quad rozszczepienia$

Rozszczepienie:

a) samorzutne (spontaniczne)

b) indukowane

- neutronami (szybkimi lub termicznymi)
- kwantami gamma (fotorozszczepienie)
- innymi cząstkami (α, p)

Przekrój czynny

 $\sigma(^{235}\text{U}, n_{\text{term}}) = 550\text{b}$ [barn] = 5.5·10⁻²⁶m²

z modelu kroplowego – deformacja kropli materii jądrowej dla $\frac{Z^2}{A} < \left(\frac{Z^2}{A}\right)_{L}$

powyżej $\left(\frac{Z^2}{A}\right)_{kryt}$ = 48 tej wartości jądro nie jest stabilne (Z = 120)

(pochwycenie neutronu dostarcza energię ~ kilku MeV potrzebną do deformacji jądra)

ROZKŁAD MASY PRODUKTÓW ROZSZCZEPIENIA²³⁵U

REAKCJA ŁAŃCUCHOWA (uran naturalny: $0,7\%^{235}U + 99,3\%^{238}U$)

spowolnienie neutronów do energii termicznej(aby nie były pochłaniane przez ²³⁸U)
 moderatory: H₂O, D₂O, grafit

konieczność wzbogacenia w ²³⁵U, aby współczynnik rozmnożenia neutronów k>1 wartość k obniża:

- o chwytanie radiacyjne n przez ²³⁵U i ²³⁸U
- $\circ\,$ chwytanie przez jądra moderatora
- $\circ\,$ ucieczka neutronów

Narastanie liczby neutronów w czasie: $n = n_0 e^{(k-1)/\tau}$

 $\tau-czas$ dzielący od siebie 2 kolejne generacje $~\tau\approx 10^{-3}~s$

np. k = 1,05, t = 1 sn = $10^{22} \leftarrow$ wybuch = bomba

Dlatego w reaktorach:

- sterowanie reakcją za pomocą materiałów pochłaniających neutrony(np. pręty kadmowe)

 wykorzystanie neutronów opóźnionych odprowadzenie energii: chłodzenie – powietrze, He, CO₂, H₂O, D₂O, ciekłe metale: Na, K, Hg, Bi

BILANS ENERGETYCZNY REAKCJI

Razem	204MeV
Energia kwantów gamma (po rozpadzie beta)	6MeV
Energia rozpadów beta (średnio 6)	20MeV
Energia kwantów gamma (średnio 5)	6MeV
Energia neutronów(średnio 2.5)	5MeV
Energia kinetyczna fragmentów	165MeV

REAKTORY POWIELAJĄCE

wytwarzają więcej paliwa niż zużywają – podwajają w ciągu kilku lat

$$\xrightarrow{238}_{92}U + n^{S2} \rightarrow \bigcirc \xrightarrow{\beta^{-}} \bigcirc \xrightarrow{\beta^{-}}_{94}^{239}Pu$$

$$\xrightarrow{239}_{94}Pu + n^{t} \rightarrow X + Y + m_{0}^{1}n$$

$$\boxed{n^{t}}$$

$$n^{S2}$$

REAKTORY JĄDROWE

Urządzenia do przeprowadzania kontrolowanych łańcuchowych reakcji rozszczepień

E. Fermi; Chicago, 2.12.1942r.

Klasyfikacja reaktorów

Podstawy klasyfikacji

1. przeznaczenie

- uniwersyteckie dydaktyczno-badawcze
- badawcze badania materiałowe

- badania stosowane(napromieniowanie)

- produkcyjne ($^{238}U \rightarrow ^{239}Pu$)
- energetyczne
- ciepłownicze
- napędowe

2. rodzaj paliwa

- uranowe(uran naturalny/wzbogacony)
- plutonowe
- powielające

3. chłodziwo

- GCR Gas Cooled Reactor (N₂, CO₂, He)
- ACR Air Cooled Reactor (powietrze)
- PWR Pressurized Water Reactor
- BWR Boiling Water Reactor
- LMR Liquid Metal Reactor(Li, Na, K)

4. moderator

D₂O, H₂O(równocześnie chłodziwo)

Grafit

Be, BeO

5. Podział według generacji

Pierwszej generacji - prototypowe

Drugiej generacji - pierwsze reaktory przemysłowe

Trzeciej generacji - reaktory nowszych konstrukcji

Czwartej generacji - najnowsze, w fazie projektów

Pierwszy reaktor (uranowo-grafitowy) zwany **CP-1** (ang. *Chicago Pile no.1*, "Stos chicagowski nr 1") zbudowany został na Uniwersytecie w Chicago pod kierunkiem włoskiego uczonego Enrico Fermiego. Pierwsza kontrolowana reakcja łańcuchowa została w nim zapoczątkowana 2 grudnia 1942.

Podstawowe typy reaktorów energetycznych

Grupa	Тур	Chłodziwo	rodzaj	Moderator	Paliwo
	reaktora				
Grafitowo - gazowe	AGR	CO ₂ , gaz	-	grafit	UO ₂ wzbogacony
GCR	Magnox	gaz, CO ₂	-		U Naturalny
	HTR	Не	-		$UO_2, UC_2, ThO_2, (^{235}U, ^{233}U, Pu)$
Ciężkowodne	PHWR	ciężka woda	ciśnieniowy	ciężka woda	UO ₂ naturalny lub wzbogacony
Lekkowodne LWR	BWR	lekka woda	wrzący	lekka woda	UO ₂ wzbogacony lub UO ₂
	PWR		ciśnieniowy		wzbogacony i MOX
	WWER		ciśnieniowy		
Wodno - grafitowe	RBMK	lekka woda	wrzący	grafit	UO ₂ wzbogacony
	GLWR		ciśnieniowy		U naturalny lub wzbogacony
Lekko - ciężkowodne	HWLWR	lekka woda	wrzący	ciężka woda	UO ₂ wzbogacony - PuO ₂
Prędkie	FBR	sód	-	_	UO ₂ wzbogacony - PuO ₂

- GCR Gas Cooled Reactor
- LWR Light Water Reactor
- AGR Advanced Gas-cooled Reactor
- Magnox nazwa pochodzi od stopu magnezowego koszulek paliwowych
- HTR High Temperature (Gas-cooled) Reactor
- PHWR Pressurized Heavy Water Reactor

- BWR Boiling Water Reactor (ABWR Advanced Boiling Water Reactor)
- PWR Pressurized Water Reactor
- WWER Wodno Wodianoj Energeticzeskij Reaktor
- RBMK Reaktor Bolszoj Moszcznosti Kanalnyj
- GLWR Graphite Light Water Reaktor
- HWLWR Heavy Water Light Water Reactor
- FBR Fast Breeder Reactor

RBMK Reactor

Typ reaktora, jaki uległ awarii w Czarnobylu w r. 1986.

Schemat rosyjskiego reaktora typu WWER-1000

Przekrój budowanego na południu Francji **reaktora ITER (International Thermonuclear Experimental Reactor)**. Jego sercem jest pokazana na zbliżeniu komora. To tam zachodzą reakcje, które prowadzą do uzyskania energii przerabianej na prąd. Ma to być pierwsze urządzenie, które **daje więcej energii, niż zużywa** do swojego funkcjonowania.

Elektrownia atomowa w czeskim Temelinie, Czechy.

Makieta elektrowni atomowej w Żarnowcu – projekt niezrealizowany (zarzucony w 1991r.).

MODELE JĄDRA ATOMOWEGO

Od modeli oczekujemy wyjaśnień:

- 1. $\rho(r) = \text{const} (\text{gęstość materii jądrowej})$
- 2. B/A
- 3. wartości spinów, parzystości, momentów elektromagnetycznych w stanie podstawowym i wzbudzonym

- 4. rozszczepienie jąder
- 5. liczby magiczne
- poziomy energetyczne jąder wzbudzonych i prawdopodobieństwa przejść między poziomami

MODEL CZĄSTEK NIEZALEŻNYCH

Oddziaływanie między cząstkami w jądrze można sprowadzić do oddziaływań z pewnym uśrednionym potencjałem (**np. model powłokowy**)

MODEL SILNEGO SPRZĘŻENIA

Oddziaływania między poszczególnymi cząstkami są tak silne, że ich ruchy są całkowicie skorelowane (**np. model kroplowy**)

MODEL KROPLOWY

Założenia:

średnia droga swobodna nukleonu w jądrze jest znacznie mniejsza od rozmiarów jądra

Model opisuje:

➢ półempiryczny wzór na energię wiązania B(Z, A)

 $B = B_0 + B_1 + B_2 + B_3 + B_4$

 $B_0 = a_0 A$ stałość energii wiązania na nukleon

 $a_0 = 15,8 \text{ MeV}$

 $B_1 \sim 4\pi R^2$ energia "napięcia powierzchniowego", $R = R_0 A^{1/3}$ $B_1 = -a_p A^{2/3}$, $a_p = 16$ MeV

 $B_2 \sim \frac{Z(Z-1)}{R}$ siły odpychania elektrostatycznego między nukleonami

$$\begin{split} B_2 &= -a_c(Z-1)ZA^{-1/3}, \ a_c = 0,71 \ \text{MeV} \\ B_3 &\sim -\frac{(N-Z)^2}{A} \quad \text{symetria liczby nukleonów, j. lekkie N} = Z, \ ciężkie N > Z \\ B_3 &= -a_s(A-2Z)^2/A \ , \ a_s = 23,7 \ \text{MeV} \end{split}$$

MODEL POWŁOKOWY

przesłanki do sformułowania modelu:

➢ liczby magiczne (N lub Z): 2, 8, 20, 28, 50, 82, 126, 184

jądra szczególnie silnie wiązane i ich duża częstość występowania we wszechświecie

≻ energia separacji neutronu: $S_n = [M(A - 1, Z) + M_n] - M(A, Z)$

duża dla magicznych N i Z

(analogia do energii jonizacji atomów o zamkniętych powłokach)

Założenie modelu:

efektywne oddziaływanie między nukleonami w jądrze są na tyle słabe, że poszczególne nukleony poruszają się w polu sił o pewnym potencjale statycznym i sferyczno – symetrycznym

np. potencjał Fermiego (pozwala wyznaczyć układ poziomów energii)

liczby magiczne – większe odległości w schemacie poziomów energetycznych

! dla potencjału Fermiego tylko 3 liczby magiczne dobre

Rys. 4.14. Schemat poziomów dla protonów i neutronów

wszystkie liczby magiczne poprawne, gdy uwzględni się sprzężenie spin – orbita

 $V(\vec{r}, \vec{l}, \vec{s}) = V(r) + V_{ls}(r)\vec{l}\cdot\vec{s}$

(analogia do struktury subtelnej

poziomów atomu)

Schemat poziomów dla protonów i neutronów

Różnice między zmierzonymi energiami separacji neutronów i wartościami obliczonymi ze wzoru półempirycznego na masę jąder

MODEL JEDNOCZĄSTKOWY(odmiana modelu powłokowego)

spiny jąder "pp" = 0, stąd:

jądro nieparzyste = rdzeń "pp" + poruszający się wokół rdzenia nieparzysty nukleon o kręcie orbitalnym l i całkowitym j

> spin jądra nieparzystego w stanie podstawowym

I = j, parzystość $\pi = (-1)^{l}$

> nukleon nieparzysty określa magnetyczny moment dipolowy jądra: $\vec{\mu} = \vec{\mu}_l + \vec{\mu}_s$

MODELE KOLEKTYWNE JĄDRA ATOMOWEGO

MODEL KOLEKTWNY WIBRACYJNY

- model powłokowy: dobry opis poziomów energetycznych jąder w sąsiedztwie liczb magicznych
- dużo nukleonów poza zamkniętą powłoką:
 - deformacje jąder

oscylacje podobne do oscylacji kropli cieczy

energie oscylacji:
$$E = \frac{1}{2}B\frac{d^2x}{dt^2} + \frac{1}{2}Cx^2$$

- x wielkość deformacji
- B bezwładność

widmo poziomów wibracyjnych jądra parzysto – parzystego

C – odpowiednik napięcia powierzchniowego w kropli cieczy

częstość oscylacji: $\omega = \sqrt{\frac{C}{B}}$

im więcej nukleonów poza zamkniętą powłoką, tym łatwiej jądra ulegają deformacji

coraz mniejsza wartość parametru C

zmniejszenie się odległości poziomów wibracyjnych dla rosnących liczb magicznych

MODEL KOLEKTWNY ROTACYJNY

- trwała deformacja jądra przy dużej liczbie nukleonów poza zamkniętą powłoką
- deformacja posiada symetrię osiową (elipsoida obrotowa)

$$R = \frac{1}{2}(a+b)$$
, $\Delta R = a-b$, a , b – półosie

$$\beta = \frac{\Delta R}{R}$$

parametry deformacji

 $\sim \frac{N}{A}$ N – liczba nukleonów poza zamkniętą powłoką

A – liczba masowa

zdeformowane jądro wykonuje ruchy kolektywne rotacyjne

kręt rotacji:

$$\left|\vec{R}\right| = \sqrt{R(R+1)}\hbar$$

energia rotacji:

$$E = \frac{\hbar^2}{2J}R(R+1)$$
 R – liczba parzysta (stany +)

➤ odległość poziomów w widmie rotacji:

 $E_2: E_4: E_6: E_8: ...=3: 10: 21: 36$

> obserwowane są widma rotacyjne w obszarach liczb masowych (jądra silnie zdeformowane)

 $A \sim 25$ 150 < A < 190A > 220 $\begin{bmatrix} Z > 50\\ N < 82 \end{bmatrix}$

MODEL GAZU FERMIEGO

[neutrony] = zdegenerowany gaz Fermiego

 \triangleright n, p poruszają się swobodnie wewnątrz kuli o promieniu R $(R = R_0 A^{1/3})$ z uwzględnieniem zakazu Pauliego

n, p znajdują się w studni potencjału o promieniu R lub prostokątnej

studnie potencjału i stany energetyczne n, p

skończona liczba poziomów

na każdym poziomie co najwyżej 2 cząstki $\uparrow\downarrow$

najwyższy poziom energii = poziom Fermiego

$$< E_{min} > \approx 30 \text{ MeV}$$

 $< p_{\rm F} > \approx 240 \text{ MeV} / \text{c}$

BILANS MASY – ENRGII W REAKCJACH JĄDROWYCH PRZY NISKICH

ENERGIACH (E < 10 MeV cząstka bombardująca)

reakcja jądrowa = zmiana własności jądra pod wpływem cząstki bombardującej lub

ładunku, liczby masowej, energii, pędu, momentu pędu, liczb kwantowych

Zachowanie masy – energii. Energia reakcji

 $x + X \rightarrow y + Y$

jądro tarczy w spoczynku: $c^2 m_x + K_x + M_x c^2 = m_y c^2 + K_y + M_y c^2 + K_y$

Q = energia reakcji = różnica mas w kanale wejściowym i wyjściowym

 $Q = (m_x + M_X)c^2 - (m_y + M_Y)c^2 = K_y + K_Y - K_x$

Q > 0 reakcja egzoenergetyczna

Q > 0 reakcja endoenergetyczna

np. reakcja syntezy (może być termojądrowa): ${}_{1}^{3}H$ (d, n) ${}_{2}^{4}He$

 $m_{x}({}_{1}^{2}H) = 2,014102 \quad u \qquad m_{y}({}_{0}^{1}n) = 1,008665 \quad u$ $M_{x}({}_{1}^{3}H) = 3,016049 \quad u \qquad M_{y}({}_{2}^{4}He) = 4,002603 \quad u$ $\overline{5,030151} \quad u \qquad 5,011268 \quad u$

1 u = 1 j. m. a., 1 u = 931,48 MeV

 $Q = [(m_x + M_x) - (m_y + M_y)]c^2 = 0,0189 u \cdot 931,48 MeV/u = 17,6 MeV$

np. reakcja rozszczepienia

 ${}^{1}_{0}n + {}^{235}_{92}U \rightarrow {}^{236}_{92}U^{*} \rightarrow {}^{94}_{38}Sr + {}^{140}_{54}Xe + 2{}^{1}_{0}n + Q$

$${}^{140}_{54}Xe \xrightarrow{\beta^-} {}^{140}_{55}Cs \xrightarrow{\beta^-} {}^{140}_{56}Ba \xrightarrow{\beta^-} {}^{140}_{57}La \xrightarrow{\beta^-} {}^{140}_{58}Ce$$

 $^{94}_{38}Sr \xrightarrow{\beta^-} ^{94}_{39}Y \xrightarrow{\beta^-} ^{94}_{40}Zr \quad oraz \quad 6e^-$

przed rozszczepieniem:	po rozszczepieniu:
	$^{140}_{58}Ce = 139,9054$ u
$^{235}_{92}U = 235,0439$ u	$_{40}^{94}Zr = 93,9036 u$
$_{0}^{1}n = 1,0087$ u	$2_0^{1}n = 2,0173 \ u$
236,0526 <i>u</i>	$6e^{-} = 0,0033 \ u$
	235,8296 <i>u</i>

$Q = 0,223 \text{ u} \cdot 931,48 \text{ MeV/u} = 208 \text{ MeV}$
ENERGIA PROGOWA REAKCJI ENDOENERGETYCZNYCH

 $Q = K_{Y} + K_{y} - K_{x} < 0$

jeżeli: $K_Y = K_y = 0$ to $(K_x)_{min} = -Q$ nieprawda !

 $(K_x)_{min}$ = minimalna energia cząstki bombardującej potrzebna do wywołani reakcji

BILANS ENERGII DLA PRZEMIAN PROMIENIOTWÓRCZYCH JĄDER

 \succ przemiana α

$${}_{z}^{A}X \rightarrow {}_{z-2}^{A-4}Y + {}_{2}^{4}He + Q$$

$$np. {}_{91}^{226}Pa \rightarrow {}_{89}^{222}Ac + {}_{2}^{4}He$$
jeżeli: Q = [M_X - (M_Y + m_y)]c² > 0 może zajść rozpad α
M_X = 226,0280 u
M_Y = 222,0178 u
m_y = m_α = 4,0026 u
Q = 0,0076 u · 931 MeV/u = 7,07 MeV

 \geq energia cząstek α

$$M_{X}c^{2} = M_{Y}c^{2} + m_{\alpha}c^{2} + K_{Y} + K_{\alpha}$$
$$Q = K_{Y} + K_{\alpha} = [M_{X} - (M_{Y} + m_{\alpha})]c^{2} > 0$$

zał.: jądro macierzyste spoczywa

 $m_{\alpha} v_{\alpha} = M_{Y} v_{Y}$ zachowanie pędu

inaczej

 \succ rozpad pozytonowy (przemiana β^+)

$${}^{A}_{Z}X \rightarrow {}^{A}_{Z-1}Y + {}^{0}_{1}e^{+} + v_{e}$$

$$(M_{X} - Zm_{e})c^{2} = [M_{Y} - (Z - 1)m_{e}]c^{2} + m_{e}^{+}c^{2} = K_{Y} + K_{e^{+}} + K_{e^{+}}$$

$$Q = K_{Y} + K_{e^{+}} + K_{v} = (M_{X} - M_{Y} - 2m_{e})c^{2}$$

Q > 0 tzn. $M_X > M_Y + 2m_e$ może nastąpić rozpad ostra krawędź widma $K_{e^+} = \max = Q(K_v = 0, K_y = 0)$

widmo ciągłe ze względu na obecność neutrina

 \succ rozpad elektronowy (przemiana β -)

$$\overset{A}{Z}X \rightarrow_{Z+1} \overset{A}{Y} + \overset{0}{_{-1}e^{-}} + \overset{\sim}{v_{e}}$$

$$(M_{X} - Zm_{e})c^{2} = [M_{Y} - (Z+1)m_{e}]c^{2} + m_{e}c^{2} + K_{Y} + K_{e^{-}} + K_{\tilde{v}}$$

$$Q = (M_{X} - M_{Y})c^{2}$$

Q > 0 tzn. $M_X > M_Y$ może nastąpić rozpad widmo ciągłe ostra krawędź

wychwyt elektronu (wychwyt K)

$${}^{0}_{-1}e^{-} + {}^{A}_{Z}X \rightarrow {}^{A}_{Z-1}Y + v$$

$$m_{e}c^{2} + (M_{X} - Zm_{e})c^{2} = [M_{Y} - (Z - 1)m_{e}]c^{2} + K_{Y} + K_{v}$$

$$Q = K_{Y} + K_{v} = (M_{X} - M_{Y})c^{2}$$

np.

$$_{-1}^{0}e+_{1}^{1}p\rightarrow_{0}^{1}n+v$$

 (n)

 (n)

powstają tylko 2 cząstki i zgodnie z zasadą zachowania pędu poruszają się jądra pochodne i neutrina są monoenergetyczne

\succ przemiana γ

$$A_{Z}^{A}X^{*} \rightarrow A_{Z}^{A}X + \gamma$$

$$hv = E^{*} - E$$

$$p_{X} = p_{\gamma} = \frac{hv}{c}$$

jądro doznaje odrzutu

ENERGIA ROZPADU α

Dla modelu jądra w kształcie kuli o jednorodnym rozkładzie ładunku wewnątrz promienia:

$$R = r_0 A^{1/3} \qquad B = \frac{Zze^2}{r_0 A^{1/3}}$$

B – wysokość bariery potencjału, Ze – ładunek jądra, ze – ładunek cząstki

Prawdopodobieństwo przeniknięcia cząstki α o energii E_{α} przez barierę:

 $\exp\left(-2/h\int_{R}^{R+r_{n}}\sqrt{2m(V-E_{\alpha})}dr\right)$

Pomiary energii cząstek α w spektrografach magnetycznych:

- prędkość cząstki:
$$v = \left(\frac{q}{m_{\alpha}}\right) \cdot H \cdot r$$

 $(q - \text{ladunek}, m_{\alpha} - \text{masa cząstki}, r - \text{promień orbity}, H - \text{natężenie pola magnetycznego})$

- energia rozpadu
$$\alpha$$
: $E_{\alpha} = \frac{1}{2}m_{\alpha}v_{\alpha}^2 + \frac{1}{2}m_rv_r^2 = \frac{1}{2}m_{\alpha}v_{\alpha}^2\left(1 + \frac{m_{\alpha}}{m_r}\right)$

Regula Geigera-Nuttala: $\log \lambda = a \cdot \log E + b$